$ V $를 벡터 공간이라고 하면, $ V $의 벡터들로 이루어진 부분집합이 일차독립이고 $ V $를 생성하면 이 벡터들의 집합을 $ V $의 기저(basis)라고 한다. $ \mathbb{R}^n $ 안의 벡터 $ e_{1}=(1, 0, ..., 0), e_{2}=(0, 1, 0, ..., 0), ..., e_{n}=(0, 0, ..., 0) $은 $ \mathbb{R}^n $의 표준기저(standard basis)라고 한다. $ \alpha = $ {$\textbf{v}_{1}, \textbf{v}_{2}, ..., \textbf{v}_{n} $}가 벡터 공간 $ V $의 기저(basis)라고 하자. 그러면 $ V $안에 있는 각각의 벡터 $ \textbf{x} $는 $\textbf{v}_{1}, \..